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ABSTRACT

This paper reviews the state-of-the-art of neural
networks for permeability prediction from well logs.
Good prediction of permeability is necessary for reservoir
characterisation and is important for improving the
reliability of the asset value of oil and gas companies.
Two particular models, known as backpropagation and
radial basis function networks, have been applied. From
previous work, six innovative aspects are identified:

choice of inputs;

outlier detection and removal;

data splitting;

scaling;

multiple networks; and

prediction confidence.
We have also provided a list of future research
directions in the area, reflecting the current deficiencies
of the use of neural networks. The topics are:
1. the quality and quantity of core data;
2. the maximum use of the logs;
3. the compatibility of scales;
4
5
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the use of soft computing; and
the management of prediction confidence.
The current applications are certainly the beginning
of a new era. It is important for petrophysicists to take
advantage of the advanced technologies.

KEYWORDS
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INTRODUCTION

Reservoir modelling and production forecasting
requires accurate permeability measurements. Welllogs

areused frequently to predict permeability in the uncored
intervals. The use of empirical equations has been
common since the early 1950s. Examples include Wyllie
and Rose, Timur and Raymer and Freeman (Bateman,
1985). Most of these equations require the estimation of
other variables (e.g. porosity and irreducible water
saturation) before they can be applied. Thisisnot an easy
task.If coresare available, the coefficients and exponents
of the equations can be adjusted until a reasonable
match with the core permeability is obtained. However,
it becomes unreliable when these equations are
extrapolated to the uncored intervals, especially in
heterogeneous reservoirs. The use of these equations is
generally tedious and time consuming.

In the late 1980s, many people started to apply statistical
techniques in searching for relationships between well logs
and core permeability (Wendt et al, 1986; Sakurai and
Melvin, 1988; Jian et al, 1994). This bypasses the need to
estimate other petrophysical logs and to assign the
coefficients and exponents. The use of linear relation and
distribution-driven (or parametric)modelsisfast and simple.
However, most techniques require the assumption and
satisfaction of multi-normality, linearity and independence
ofinputs (Davis, 1986; Size, 1987). In an uncertain geological
environment with a small sample set, the use of assumptions
will reduce the reliability of the predictions, and they must
be applied with great caution.

In the early 1990s, some petrophysicists revisited the
application of an assumption-free approach for well
logging, namely artificial neural networks. This approach
presents a suite of advanced pattern recognition
techniques, which are inspired by the biological neural
system in the human brain structure (Wasserman, 1989;
Zurada, 1992). These techmniques have the ability to
‘learn from experience’ and are now well accepted in
many engineering practices. The popularity hasresulted
in the establishment of international societies, the
organisation of regional and international conferences,
the publication of peer-reviewed journals and the
development of commercial software. This applies also
to related technologies such as fuzzy computing (Cuddy,
1997; Fung et al, 1997c; Huang et al, 1999) and
evolutionary computing (Huang et al, 1998b).

Inthe past10years,neural networks have beenapplied
to many areas in reservoir evaluation. Examples include
lithology recognition (e.g. Smith et al, 1991; Rogers et al,
1992), porosity and permeability prediction (e.g. Wong
et al, 1995b; Malki et al, 1996) and reservoir mapping
(e.g. Wang et al, 1999). In this paper, we will focus on
permeability prediction from well logs. We will first
revisit the basic models of neural networks for
permeability estimation, followed by areview of previous
work. We will also provide a list of future research
directions in the area. '
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ARTIFICIAL NEURAL NETWORKS

Artificial neural networks (ANNs) are universal
approximatorsinspired by some working functions of the
brain and nervous system. They operate as non-linear
dynamic systems that learn to recognise patterns after
being ‘trained’. A ‘trained’ ANN has been presented with
training data, which consist of a number of observed
input signals (e.g. well logs) paired with target signals
(e.g. permeability). Once trained, new input data can be
applied to it, allowing prediction of output values.

The major components of ANNs are neurons and
connections. The connections are weights between the
neurons. Neurons are also often referred to as units or
nodes. Each neuron, except the input neurons, uses a
transfer function to process the input values passed on
from the preceding neurons. This arrangement allows
the calculation of a final output for a given set of input
values. The final output is compared with the desired
output, and the connection weights are adjusted using a
learning algorithm in order to minimise the total error of
the system. In this section, we will revisit the basic
concepts of two supervised neural network paradigms,
that have been applied to permeability prediction.

Back propagation neural networks

Back propagation neural networks (BPNNs) are the
most popular types of ANNSs to date. The architecture of
a BPNN consists of an input and output layer of neurons
as shown in Figure 1. There is also at least one hidden
layer, sitting between the input and output layers, which
has a certain number of neurons (often determined by
trial and error). All neurons of adjacent layers are fully
interconnected by weights and biases. A bias is a fixed
input value (often set at one) added to each connection in
the hidden and output layers, that is analogous to the
intercept used in linear regression. There are no
interconnections between neurons of the same layer.
The forward propagation step sendsinput signals through
the network to create an output value. A mathematical
function called a transfer function is applied at each
connection. Mathematically, the estimator can be
expressed as follows:

n2 ni
V= flao+ 2 0,05\ Boy+ D Byx,
=1

i=]

where Y is the output (e.g. permeability), x, are the
inputs (e.g. well logs), o, and f; are the connection
weights, o, and B,; are called the bias weights, n1 is the
number of inputs (e.g. number of well logs used) and n2
is the number of hidden neurons. fj(.) is the transfer
function. A typical function used is the sigmoid function
f(z)=1/(1+e?). This mathematical model allows complex
combination of inputs (i.e. well logs) and hence avoids
manual manipulation of coefficients and exponents in
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Figure I. A schematic diagram of a backpropagation neural
network. (x,..x ) are the inputs, Y is the output, cand
are the connection weights.

most empirical equations.

Initial weights (usually small random values) provide
a starting point for training. A gradient-descent algorithm
is used to recalculate the weights until the total error for
all the training patternsis below a tolerance value. At the
end of training the weights are saved and the network
can be used for prediction. More details are given in
Bishop (1995).

It is important to note that, if a network is trained for
too long, it will memorise the training patterns and fail to
generalise. This situation is known as ‘overtraining’. An
overtrained network often gives a large error on unseen
data. The method to avoid overtraining is a continual
area of research. One popular method is the use of a
validation data set, which is usually a subset of the
original training data set. This data setisused to test the
performance of the trained network at a specific number
of iterations or ‘epochs’. In general, the validation error
reduces with epochs and increases beyond a certain
epoch. At this point, we may terminate the training
process before the performance deteriorates (Fig.1).
This process of avoiding overtraining is called ‘early-
stopping’, and while it is easy to implement, it does-
require a large number of training patterns.

Radial basis function neural networls

Radial basis function neural networks (RBFNNs)
present a data-interpolation procedure by non-linear
functions in a multi-dimensional space (Bishop, 1995).
These networks use the centre-weighted response of a
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radial basis function (RBF), which is a symmetrical
function (e.g. Gaussian), to learn from the training
patterns. The general estimator can be expressed in the
following manner:

r=3e, /()

where «. are the connection weights, n is the number of
RBF centres and denotes the distance between the input
vector x and the reference vector r;, or the Euclidean
norm. The f(.) in this case represents a RBF.

Figure 2 shows a schematic diagram of a RBFNN. A
distinct characteristic of RBFNN is the use of only one
hiddenlayer. The number of RBF centres determines the
exactness of the estimator. If all the training patterns are
used as the reference vectors, it is straightforward to see
that the weights can be obtained analytically by solving
a system of linear equations with unknowns. Hence, the
desired outputs of the training set can be reproduced
exactly in the model. This type of network is sometimes
known as ‘interpolation neural network’ (Wong and Shibli,
1998). If however, only a portion of the training patterns
is retained as the RBF centres, a numerical method (e.g.
gradient-descent) is required to iteratively estimate the
weights as in BPNNs. The desired outputs can only be
approximated (i.e. inexact) in the model. This model is
known as ‘approximation neural network’ (Wang et al,
1999). In practice, both networks are useful, depending
on the objectives of the modelling study.

Hidden
Layer

input
Layer

A Y1

Figure 2. A schematic diagram of a radial basis function neural
network. (x,..x,,) are the inputs, Y is the output, ¢ are the
connection weights and r are the reference vectors.

PREVIOUS WORK

There are many examples of the use of ANNs to
estimate permeability from well logs (e.g. Zhang, 1998;
Huang, 1999). Some provide advanced models addressing
specific problems in well logging, while others put the
neuralnetworksintoreal practice. So far all the published
works have shown improvement over conventional
methods, including the use of empirical equations and
multiple regression. Case studies have been concluded
in a number of places, including Australia, Canada,
China, India, Indonesia and North and South America.In
this paper, we will summarise the innovative aspects of
these case studies in six subsections.

Choice of inputs

Itis conceptually correct to relate in-situ permeability
to permeability-related well log measurements. In
practice however, the relationships are too complex and
too non-linear. For example, the photoelectric factor log
(PEF) is a lithology indicator and the caliper reflects the
mud cake thickness. These two logs are in fact related to
permeability, but the exact relationships are difficult to
derive. This is the major reason for applying the self-
adaptive neural networks. It becomes a redundant
exercise if neural networks are used to model data
generated from a well-defined function. If the networks
learn successfully, they will show a stronger connection
to the more significant well logs than those which are less
significant (Wong et al, 1995a; Fung et al, 1997a). In
Wong et al (1998), it was proposed that the caliper and
PEF logs had the second and third highest contributions
to permeability respectively, while bulk density had the
highest contribution.

Apart from well logs, other information can also be
included in the network. Rogers et al (1995), Mohaghegh
et al (1996) and Huang et al (1996b) used the spatial
coordinate of the well log values (including the well
positions) as inputs to the network. This is particularly
useful for analysing multi-well data as it allows the
network to learn the spatial relationships of the data.
Garrouch and Smaoui (1998)included the weight fractions
of various minerals (quartz, chert, plagioclase and
feldspar, calcite and dolomite, chlorite and kaolonite,
illite and smectite) together with the mean pore size
radius and porosity as inputs.

The generation of additional well logsis also useful for
permeability prediction. Combining original well logs
can accomplish this. Additional input neurons are
required (Fig. 3). It mayimprove the network performance
(Lippmann, 1989). In Wong et al (1998), the average
matrix grain surface area (a function of total porosity and
shale fraction) and the difference between density and
neutron porosity were used as additional inputs. The use
of other combinations or even log-derived properties is
also possible. Examplesinclude ratio of travel time of the
sonic over gamma ray, ratio of the deep and shallow
resistivity values, apparent total porosity and apparent
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Figure 3. Use of an additional input x; at the input layer, where x=

flx %)

matrix density (Zhang and Salisch, 1998). The use of non-
linear inputs may reduce the complexity of the network
topology.

Outlier detection and removal

The presence of outliers in the training set is an
important issue in petrophysical evaluation. Most
reservoir data are noisy in nature. Generally speaking,
the use of noisy data in neural learning has two
detrimental effects: slow learning of the good patterns
and unnecessary fitting of the outliers. It is therefore
desirable to remove the outliers in the training set where
possible. Techniques such as ‘error sign testing’ or EST
(Wong and Gedeon, 1995) and Bayesian neural networks
(Cho et al, 1999) have been proposed.

The EST technique examines the learning profile of
each training pattern. The patterns are classified based
on the number of negative signs when taking the
difference between the errors at the current epoch and
the previous epoch. A bad pattern will have a small
number of negative signs showing that the errorincreases
with epochs, or each presentation of the training patterns.
The identified bad patterns can then be discarded.

In Cho et al (1999), the authors proposed the use of a
recentneural network paradigm, namely Bayesian neural
networks (MacKay, 1992), for outlier detection. The
unique feature of such networksis the use of a distribution
of weights. This allows the calculation of error bars for
each training pattern. A pattern with a small error bar
may be considered a good pattern. The paper showed
that discarding the bad patterns improved porosity
prediction by 56% and permeability prediction by 30%.

In Wong and Gedeon (1999), the authors proposed the
use of fuzzy reasoning concept (Zadeh, 1993) for training
a backpropagation neural network. The technique
automatically discounts the contribution of the pattern
having a large error during training. This advanced
concept avoids the use of an either-or decision on whether
a pattern is bad or not, and uses a ‘membership function’
to quantify the merit of each pattern. Unlike the previous
outlier detection methods there is no definite boundary
to separate good and bad patterns. This technique is fast
and easy to implement for practical field studies (Wong
et al, 1998).
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Data splitting

The use of BPNNs and RBFNNs requires a training
data set. On many occasions, it is important to optimise
the configuration of the networks. For example, in BPNNs,
it is necessary to obtain the optimum number of hidden
neurons. In RBFNNs, it is desirable to use the best type
of RBF with the best functional parameters (e.g. the
variance in Gaussian function). One method of optimising
a network is the use of a validation data set, as discussed
in early-stopping. This is only possible if a reasonable
number of training patternsis available. A decision must
be made as to whether the data set is large enough to
sacrifice patterns from training for validation.

If the number of training patternsis sufficiently large,
the next technological challenge ishow to split the whole
data set into two. A number of ways have been proposed
in the literature. Firstly, if many wells are available,
some wells may be used for training and the rest for
validation (White et al, 1995; Wong and Shibli, 1998).
There is no theoretical guideline on how many patterns
should be used in each data set. The rule of thumb is that
the training set should be at least of the same size as the
validation set.

However, if the characteristics of the training and
validation sets are too different, this poses another
problem in early-stopping. The optimum stopping point
will tend to bias the patterns in the validation set (Wong
etal,1997). In Wong et al (1996) and Crocker et al (1999),
a clustering algorithm, namely self-organising maps or
SOMs (Fung et al, 1995; Kohonen, 1995), was applied to
divide all the patterns into two groups. The training set
was constructed by selecting 50% of the patterns in the
first group and 50% in the other group. The remaining
patterns were used as the validation set (Fig. 4). This
practice ensures that the two data sets contain similar
characteristics, and avoids the modelling bias in early-

stopping.
Scaling

The incompatibility of the measurement scales of well
logsand core dataisasignificant and well-known problem
in core-log integration studies (Ahmed et al, 1989;
Worthington, 1997). This is commonly referred to as the
‘scaling’ problem. Core data typically representreservoir

COriginaI Data Set)

Training Set

C Validation Set )

Figure 4. A data splitting procedure.
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properties within one-inch plugs. Log data, however,
represents averages over amuch largerrock volume both
radially and vertically. Hence, direct integration of core
and log data without any quality control may lead to
inaccurate results. In Wong et al (1995¢, 1998), they
added statistical noise to the permeability estimates.
The final values mimicked the core data distribution
successfully. However, this technique does not handle
the scaling effect in a direct fashion.

A few techmniques to incorporate the scaling effect
have been proposed and implemented in neural networks
(Fig. 5). Many researchers (Liu et al, 1992; Jenner and
Baldwin, 1994; Rogers et al, 1995; Arpat, 1997; Goncalves
etal,1997) used neighbouring log data (points above and
below) to predict permeability at the centred-depth (Fig.
5a). This technique uses additional input neurons to
encode the neighbouring signals, and has the capability
to compensate for any minor depth-matching error
between log and core data and also allows matching of
the measurement scales. The size of the depth windows
depends on the vertical resolution of the well logs used.
In Huang et al (1996b), they averaged the neighbouring
core permeabilities and related the averaged perm-
eability to the log data (Fig. 5b). This technique is
commoninmany current practices. Recently, Wong (1999)
introduced an improved technique to relate the well logs
directly to the neighbouring, and often closely spaced,
core permeabilities (Fig. 5¢). The techniqueincorporates
the averaging effect of the log data and avoids the
calculation of average permeability. More discussion is
presented in the later sections of this paper.

Multiple networks

The use of multiple networks aims to subdivide a
complex problem into a number of simpler problems
(Fung et al, 1997b). There are two ways to connect the
individual modules in the system: 1) in series; and 2) in
parallel. This section will describe the connection in
series, and the next section will discuss the connection in
parallel under the heading ‘Prediction confidence’.

In multiple networks, each network acts as an
individual module to tackle specific problems. Figure 6
shows an example of two networks in series. In this case,
they create a result through the first ANN and reassign
the output as an input neuron (often along with the
original training inputs) into the second ANN. The
reassigned output value when applied as an input neuron
has the effect of mimicking the shape of the target
values. This method avoids averaging by essentially
adding a constraint.

Wong etal (1995b;1995¢) used the concept of multiple
networks to predict permeability via lithology. The first
network used for lithology, a classification based on
conventional well logs. The lithology indicator was
subsequently used for permeability prediction in the
second network. The lithology information was used as
constraints for improved predictions. This concept also
follows the geclogical practice which does not treat the

de pth,,1 — Y J x” ;
depth,,~— X, . X,

a) Use of neighbouring logs.

b) Use of average permeability.

depth,

depth; -

depth

1

¢) Use of neighbouring core permeabilities.

Figure 5. Use of neighbouring patterns. (x,..x ) are the well logs
(inputs) and Y is the permeability {output).

whole reservoir as a single flow unit, but subdivides the
reservoir into a number of distinctly different units.

Zhang and Salisch (1998) also used two networks to
estimate permeability values. The first network estimated.
the permeability range, which is essentially a network
for classification. The output values of this network were
reassigned as an input neuron into the second network
that predicted the actual permeability value. The
permeabilityrange wasused to constrain the quantitative
estimate of permeability.

Prediction confidence

Permeability prediction throughout the uncored
intervals based on the estimators developed at the cored
intervals involves a great deal of uncertainty. It is
unrealistic to use a single number to represent the
permeability at a particular location. Therefore, itis best
to produce a measure of prediction confidence (e.g.
prediction range) for each and every prediction. It is a
matter of fact that the confidence measure should attach
to even the training pattern. This is because of the
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Module 1 » Constraint

v v

INPUTS

»  Module 2

Figure 6. An example of two multiple networks.

C Qriginal Data Set )
Training Set

Training Set

ANN, sun ANN_
: :
Y 1 4 n

Figure 7. Use of multiple training sets with multiple networks.

presence of errors in the well logs and the core
permeability values, and the fact that the core and log-
derived permeability values are not of compatible scales.
The confidence measure may in fact indicate the guality
of each training pattern (Cho et al, 1999).

Thereare currently three general approachesinneural
networks to generate a range of predictions for the same
input vector (Figs 7-9): 1) use of multiple training sets; 2)
use of multiple networks; and 3) use of error bars.

MULTIPLE TRAINING SETS

In Wong et al (2000), an observational learning
algorithm was used to create multiple permeability
predictions using the same input logs. The algorithm
generates additional training patterns from the original
training set (Cho et al, 1998). This is followed by the use
of bootstrapping to randomly select training patterns
with replacement. This sampling process provides
different training sets for training different networks,
and hence multiple predictions are obtained (Fig. 7). The
technique was applied to two oil and gas wells in an
Australian reservoir, and the results showed a 39% to
43% improvement (in terms of errors) in a blind test
compared tomultiple linear regression. The permeability
range also provided valuable information into the
reliability of the predictions.
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MULTIPLE NETWORKS

The previous section discussed the multiple networks
in series. This section shows how connection in parallel
generates multiple predictions. Multiple networks use
the same training set to train networks with different
configurations. The configuration parameters include
initial weights, number of hidden neurons and learning
the algorithms. The purpose is to capture the uncertainty
of the model parameters. The arrangement in parallel
produces multiple predictions for the same input data.
The difference between the maximum and minimum
predictions provides a measure of prediction confidence:
the smaller the difference (or range), the smaller the

" uncertainty, and vice versa. If desirable, the final solution

can be combined by a simple weighted method (Huang et
al, 2000).

In Bruce et al (1999), the above concept was extended
and used multiple training sets to train multiple networks.
The approach was applied to a sandstone reservoir in
Sumatra, Indonesia. In this case, well log and core data
were available from four wells. Since the log responses
and the statistics of the core permeability values exhibit
different behaviour, a network was trained for each well
usingits own data set. After training, the well logs of each
well were applied to the four networks. The maximum
and minimum of the four predictions indicated the
complexity of the training patterns. Ideally all the
predictions should be identical. The permeability range
provides a measure of prediction confidence. This
approach avoids averaging and is able to indicate the
uncertainty of extrapolation to the uncored intervals.

The permeability profiles of one of the four wells are
showninFigure 8. The profiles show that the permeability
rangeisrelatively smallin the coreintervalsand becomes
large in some uncored intervals. For example, the clean
interval between 4,370 feet to 4,400 feethasalargerange
value. This is mainly due to the fact that most of the
training patterns come from the relatively shaly regions
and the clean patterns were under-sampled. The range
valueisimportant forindicating the risk for extrapolation
or the degree of similarity to the training patterns.

ERROR BARS

Other networks have confidence or error bars built
into their algorithms. One example is Bayesian neural
networks, which implements backpropagation in Bayesian
learning (MacKay, 1992). The model is able to provide a
mean and a standard deviation (or error bar) for each
prediction. Quetal (2000) used aBayesian neural network
to estimate permeability for the same data set asin Bruce
et al (1999). The results for the same well are shown in
Figure 9. The sigma (i.e. standard deviation) profile
indicates the prediction confidence, which gives a similar
message as in the multiple networks approach.
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Figure 8. Permeability profiles from multiple networks: a) gamma ray curve; b) permeability prediction with core data; and ¢) permeability

range.

FUTURE TRENDS

The progress shown in previous work encourages
further investigation. It is important to understand the
limitations of neural networks in petrophysical
evaluations. This final section outlines five key research
directions for the future use of neural networks.

Core data

The size of the core data set is generally small. It
becomes an important issue for the application of any
non-parametric techniques. The distributions of training
data may not be representative for the whole field. This

problem can be further complicated if there is a strong
bias in core sampling strategy (e.g. coring in only high
permeability sands) in heterogeneous cores. Further
work should be focussed on the generation of additional
training patterns and the identification of outliers (e.g.
Cho et al, 1999).

Well logs

The current neural networks can only use the common
well logs available for all wells. The application of such
networks in new wells will certainly require the same
types of well logs used for training. In practice, however,
it may be difficult to conduct the same logging program
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Figure 9. Permeability profiles from Bayesian network: a) gamma ray curve; b) permeability prediction with core data; and c) sigma (standard

. deviation) curve.

for all wells. Mud logs also contain valuable information,
but they are currently under-utilised in this problem
domain. It is therefore important to develop improved
techniques to maximise the use of all well data.

Scaling

The incompatibility of the measurement scales of well
logs and core data will remain a physical problem for any
core-log correlation studies. The development of better
logging tools willreduce the extent of the scaling problem.
Nevertheless, direct integration of core and log data ata
given depthmaylead toinaccurate and unrealisticresults.
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It becomes necessary to incorporate the vertical trends
and fluctuations of the log curves and the boundary
effects across beds with distinct characteristics. More
studies are required to investigate the contribution of
the neighbouring beds.

Soft computing

Neural networks are increasingly used together with
other intelligent techniques (e.g. fuzzy computing and
evolutionary computing) for performance enhancement.
The various disciplines of artificial intelligence are no
longer competing with each other, but rather providing
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capability and flexibility to each other. Such hybrid use
is now known as ‘soft computing’ (Zadeh, 1993; Tamhane
et al., 2000). Techniques such as neural-fuzzy (Huang et
al,1996a; Huangetal, 1997), neural-genetic (Huang et al,
1998b) and neural-fuzzy-genetic (Huang et al, 1998a;
Huang et al, 2000) are emerging for industrial
applications. The future workincludesthe use of advanced
techniques to incorporate prior geological knowledge
(including the permeability from the empirical equations)
and to provide reliable extrapolation from the cored
intervals to the uncored intervals.

Prediction confidence

Uncertainty is an important issue in permeability
prediction. The present approach to quantify the
uncertaintyis to examine the closeness of the permeability
estimates from, at least, two independent predictors.
This approach is in fact not valid because it implicitly
assumes the validation of the assumptions behind the
two predictors that are often contradictory. Itisimportant
to understand the sensitivities of a predictor before
comparing the performance of various predictors. It
becomes necessary to provide a range of predictions,
rather than a single prediction.

Some techniques have been proposed to produce a
range of permeability values using the same input pattern.
Therange or standard deviation of the prediction provides
a quantitative measure of prediction confidence. The
change of such measures with depth may indicate the
degree of heterogeneity in the reservoir (Bruce et al,
1999; Wong, 1999; Qu et al, 2000). The future research
lies on the correlation of the uncertainty measures with
the well logs and the regional geology.

CONCLUSIONS

This paper summarises the current state-of-the-art of
permeability prediction using artificial neural networks.
Two models, known as backpropagation and radial basis
function networks, have been applied. Five major
research directions in the future are identified:

1. the quality and quantity of core data;

2. the maximum use of the well logs;

3. the compatibility of scales;

4, the use of soft computing; and

5. the management of prediction confidence.

These areas deserve special attention from academia
and industry. The current applications are certainly the
beginning of anew era. Itisimportant for petrophysicists
to take advantage of the advanced technologies.
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